НЕЙРОвести — AI агрегатор новостей

Hunyuan GameCraft — нейронный игровой движок от Tencent Выглядит на голову выше Genie 2 и других конкурентов, при этом сильно более интерективная. В качестве основы используется Hunyuan Video, который натюнили на геймплее из более чем сотни ААА проектов — Assassin’s Creed, Red Dead Redemption и Cyberpunk 2077. Результат соответствующий — некоторые игры из датасета можно легко узнать по результатам генерации модели. Основная проблема добавления интерактивности в видеомодель — это компромисс между стабильностью картинки и отзывчивостью на действия игрока. Если модель слишком сильно держится за прошлое, она становится инертной и плохо реагирует на резкие повороты. Если же она ориентируется только на последний кадр, то быстро забывает сцену, что приводит к куче артефактов. Если вы пробовали поиграть в нейронный майнкрафт, то вы понимаете о чём я говорю. Авторы пейпера решают эту проблему с помощью гибридной стратегии обучения, где модель учится генерировать видео в трёх разных режимах: начиная с одного кадра (25%), продолжая короткий фрагмент (70%) или длинный (5%). Смешивая эти три режима во время обучения, модель становится универсальной. Она учится как начинать видео с нуля, так и продолжать его, балансируя между консистентностью и реакцией на новые команды. Но интерактивность бесполезна если модель настолько медленная, что отклика нужно ждать несколько секунд или даже минуты. Поэтому авторы дистиллируют модель в PCM — Это позволяет добиться 6.6FPS на 1xH100, это всё ещё неприятно, но уже может считаться интерактивным. Правда это можно заметно ускорить — перевести инференс на Blackwell, квантизировать модельки, дистиллировать в модельку поменьше, ну и другие методы из моего поста про ускорение диффузии. Сайт проекта Пейпер

NeuroVesti
Hunyuan GameCraft — нейронный игровой движок от Tencent Выглядит на голову выше Genie 2 и других конкурентов, при этом сильно более интерективная. В качестве основы используется Hunyuan Video, который натюнили на геймплее из более чем сотни ААА проектов — Assassin’s Creed, Red Dead Redemption и Cyberpunk 2077. Результат соответствующий — некоторые игры из датасета можно легко узнать по результатам генерации модели. Основная проблема добавления интерактивности в видеомодель — это компромисс между стабильностью картинки и отзывчивостью на действия игрока. Если модель слишком сильно держится за прошлое, она становится инертной и плохо реагирует на резкие повороты. Если же она ориентируется только на последний кадр, то быстро забывает сцену, что приводит к куче артефактов. Если вы пробовали поиграть в нейронный майнкрафт, то вы понимаете о чём я говорю. Авторы пейпера решают эту проблему с помощью гибридной стратегии обучения, где модель учится генерировать видео в трёх разных режимах: начиная с одного кадра (25%), продолжая короткий фрагмент (70%) или длинный (5%). Смешивая эти три режима во время обучения, модель становится универсальной. Она учится как начинать видео с нуля, так и продолжать его, балансируя между консистентностью и реакцией на новые команды. Но интерактивность бесполезна если модель настолько медленная, что отклика нужно ждать несколько секунд или даже минуты. Поэтому авторы дистиллируют модель в PCM — Это позволяет добиться 6.6FPS на 1xH100, это всё ещё неприятно, но уже может считаться интерактивным. Правда это можно заметно ускорить — перевести инференс на Blackwell, квантизировать модельки, дистиллировать в модельку поменьше, ну и другие методы из моего поста про ускорение диффузии. Сайт проекта Пейпер
Hunyuan GameCraft — нейронный игровой движок от Tencent Выглядит на голову выше Genie 2 и других конкурентов, при этом сильно более интерективная. В качестве основы используется Hunyuan Video, который натюнили на геймплее из более чем сотни ААА проектов — Assassin’s Creed, Red Dead Redemption и Cyberpunk 2077. Результат соответствующий — некоторые игры из датасета можно легко узнать по результатам генерации модели. Основная проблема добавления интерактивности в видеомодель — это компромисс между стабильностью картинки и отзывчивостью на действия игрока. Если модель слишком сильно держится за прошлое, она становится инертной и плохо реагирует на резкие повороты. Если же она ориентируется только на последний кадр, то быстро забывает сцену, что приводит к куче артефактов. Если вы пробовали поиграть в нейронный майнкрафт, то вы понимаете о чём я говорю. Авторы пейпера решают эту проблему с помощью гибридной стратегии обучения, где модель учится генерировать видео в трёх разных режимах: начиная с одного кадра (25%), продолжая короткий фрагмент (70%) или длинный (5%). Смешивая эти три режима во время обучения, модель становится универсальной. Она учится как начинать видео с нуля, так и продолжать его, балансируя между консистентностью и реакцией на новые команды. Но интерактивность бесполезна если модель настолько медленная, что отклика нужно ждать несколько секунд или даже минуты. Поэтому авторы дистиллируют модель в PCM — Это позволяет добиться 6.6FPS на 1xH100, это всё ещё неприятно, но уже может считаться интерактивным. Правда это можно заметно ускорить — перевести инференс на Blackwell, квантизировать модельки, дистиллировать в модельку поменьше, ну и другие методы из моего поста про ускорение диффузии. Сайт проекта Пейпер
Дата публикации: 25.06.2025 13:49