
How Anthropic teams
use Claude Code

Anthropic’s internal teams are transforming their workflows with Claude Code, enabling 

developers and non-technical staff to tackle complex projects, automate tasks, and bridge 

skill gaps that previously limited their productivity.

Through interviews with our own Claude Code power users, we’ve gathered insights on how

different departments leverage Claude Code, its impact on their work, and tips for other

organizations considering adoption.

ANTHROP\C

How Anthropic teams
use Claude Code

</>

Anthropic's internal teams are transforming their workflows with Claude Code, enabling

developers and non-technical staff to tackle complex projects, automate tasks, and bridge

skill gaps that previously limited their productivity.

Through interviews with our own Claude Code power users, we've gathered insights on how

different departments leverage Claude Code, its impact on their work, and tips for other

organizations considering adoption.

Contents Claude Code for data infrastructure 3

Claude Code for product development 5

Claude Code for security engineering 7

Claude Code for inference 9

Claude Code for data science and visualization 11

Claude Code for API 13

Claude Code for growth marketing 15

Claude Code for product design 17

Claude Code for RL engineering 19

Claude Code for legal 21

2 How Anthropic teams use Claude Code

Contents

2

Claude Code for data infrastructure

Claude Code for product development

Claude Code for security engineering

Claude Code for inference

Claude Code for data science and visualization

Claude Code for API

Claude Code for growth marketing

Claude Code for product design

Claude Code for RL engineering

Claude Code for legal

3

5

7

9

11

13

15

17

19

21

HOW ANTHROPIC TEAMS USE CLAUDE CODE

Claude Code for data
infrastructure

The Data Infrastructure team
organizes all business data for
teams across the company. They
use Claude Code for automating
routine data engineering tasks,
troubleshooting complex
infrastructure issues, and
creating documented workflows
for technical and non-technical
team members to access and
manipulate data independently.

Main Claude Code use cases

Kubernetes debugging with screenshots 

When Kubernetes clusters went down and weren’t scheduling new pods,

the team used Claude Code to diagnose the issue. They fed screenshots of

dashboards into Claude Code, which guided them through Google Cloud’s

UI menu by menu until they found a warning indicating pod IP address

exhaustion. Claude Code then provided the exact commands to create a

new IP pool and add it to the cluster, bypassing the need to involve

networking specialists.

Plain text workflows for finance team 

The team showed finance team members how to write plain text files

describing their data workflows, then load them into Claude Code to get

fully automated execution. Employees with no coding experience could

describe steps like “query this dashboard, get information, run these

queries, produce Excel output,” and Claude Code would execute the entire

workflow, including asking for required inputs like dates.

Codebase navigation for new hires 

When new data scientists join the team, they’re directed to use Claude

Code to navigate their massive codebase. Claude Code reads their

Claude.md files (documentation), identifies relevant files for specific

tasks, explains data pipeline dependencies, and helps newcomers

understand which upstream sources feed into dashboards. This replaces

traditional data catalogs and discoverability tools.

End-of-session documentation updates 

The team asks Claude Code to summarize completed work sessions and

suggest improvements at the end of each task. This creates a continuous

improvement loop where Claude Code helps refine the Claude.md

documentation and workflow instructions based on actual usage, making

subsequent iterations more effective.

Parallel task management across multiple instances 

When working on long-running data tasks, they open multiple instances

of Claude Code in different repositories for different projects. Each

instance maintains full context, so when they switch back after hours or

days, Claude Code remembers exactly what they were doing and where

they left off, enabling true parallel workflow management without 

context loss.

3 Claude Code for data infrastructure

Claude Code for data
infrastructure

3

The Data Infrastructure team
organizes all business data for
teams across the company. They
use Claude Code for automating

routine data engineering tasks,
troubleshooting complex
infrastructureissues,and
creating documented workflows
for technical and non-technical

team members to access and
manipulate data independently.

Main Claude Code use cases

Kubernetes debugging with screenshots
When Kubernetes clusters went down and weren't scheduling new pods,

the team used Claude Code to diagnose the issue. They fed screenshots of

dashboards into Claude Code, which guided them through Google Cloud's

UI menu by menu until they found a warning indicating pod IP address

exhaustion. Claude Code then provided the exact commands to create a

new IP pool and add it to the cluster, bypassing the need to involve

networking specialists.

Plain text workflows for finance team
The team showed finance team members how to write plain text files

describing their data workflows, then load them into Claude Code to get

fully automated execution. Employees with no coding experience could

describe steps like "query this dashboard, get information, run these

queries, produce Excel output," and Claude Code would execute the entire

workflow, including asking for required inputs like dates.

Codebase navigation for new hires
When new data scientists join the team, they're directed to use Claude

Code to navigate their massive codebase. Claude Code reads their

Claude.md files (documentation), identifies relevant files for specific

tasks, explains data pipeline dependencies, and helps newcomers

understand which upstream sources feed into dashboards. This replaces

traditional data catalogs and discoverability tools.

End-of-session documentation updates
The team asks Claude Code to summarize completed work sessions and

suggest improvements at the end of each task. This creates a continuous

improvement loop where Claude Code helps refine the Claude.md

documentation and workflow instructions based on actual usage, making

subsequent iterations more effective.

Parallel task management across multiple instances
When working on long-running data tasks, they open multiple instances

of Claude Code in different repositories for different projects. Each

instance maintains full context, so when they switch back after hours or

days, Claude Code remembers exactly what they were doing and where

they left off, enabling true parallel workflow management without

context loss.

CLAUDE CODE FOR DATA INFRASTRUCTURE

Claude Code for data
infrastructure

Team impact Resolved infrastructure problems without specialized expertise 

Resolved Kubernetes cluster issues that would normally require pulling in

systems or networking team members, using Claude Code to diagnose

problems and provide exact fixes.

Accelerated onboarding 

New data analysts and team members can quickly understand complex

systems and contribute meaningfully without extensive guidance.

Enhanced support workflow 

Can process much larger data volumes and identify anomalies (like

monitoring 200 dashboards) that would be impossible for humans to

review manually.

Enabled cross-team self-service 

Finance teams with no coding experience can now execute complex data

workflows independently.

Top tips from the 
Data Infrastructure
team

Write detailed Claude.md files 

The better you document your workflows, tools, and expectations in

Claude.md files, the better Claude Code performs. This made Claude Code

excel at routine tasks like setting up new data pipelines when you have

existing patterns.

Use MCP servers instead of CLI for sensitive data 

They recommend using MCP servers rather than the BigQuery CLI to

maintain better security control over what Claude Code can access,

especially for handling sensitive data that requires logging or has

potential privacy concerns.

Share team usage sessions 

The team held sessions where members demonstrated their Claude Code

workflows to each other. This helped spread best practices and showed

different ways to use the tool they might not have discovered on 

their own.

4 Claude Code for data infrastructure

Claude Code for data
infrastructure

Team impact

Top tips from the
Data Infrastructure
team

4

Resolved infrastructure problems without specialized expertise
Resolved Kubernetes cluster issues that would normally require pulling in

systems or networking team members, using Claude Code to diagnose

problems and provide exact fixes.

Accelerated onboarding
New data analysts and team members can quickly understand complex

systems and contribute meaningfully without extensive guidance.

Enhanced support workflow
Can process much larger data volumes and identify anomalies (like

monitoring 200 dashboards) that would be impossible for humans to

review manually.

Enabled cross-team self-service
Finance teams with no coding experience can now execute complex data

workflows independently.

Write detailed Claude.md files
The better you document your workflows, tools, and expectations in

Claude.md files, the better Claude Code performs. This made Claude Code

excel at routine tasks like setting up new data pipelines when you have

existing patterns.

Use MCP servers instead of CLI for sensitive data
They recommend using MCP servers rather than the BigQuery CLI to

maintain better security control over what Claude Code can access,

especially for handling sensitive data that requires logging or has

potential privacy concerns.

Share team usage sessions
The team held sessions where members demonstrated their Claude Code
workflows to each other. This helped spread best practices and showed

different ways to use the tool they might not have discovered on

their own.

CLAUDE CODE FOR DATA INFRASTRUCTURE

Claude Code for product
development

The Claude Code team uses their
own product to build updates to
Claude Code, expanding the
product’s enterprise capabilities
and agentic loop functionalities.

Main Claude Code use cases

Fast prototyping with auto-accept mode 

Engineers use Claude Code for rapid prototyping by enabling “auto-

accept mode” (shift+tab) and setting up autonomous loops where Claude

writes code, runs tests, and iterates continuously. They give Claude

abstract problems they’re unfamiliar with, let it work autonomously, then

review the 80% complete solution before taking over for final refinements.

Teams emphasize starting from a clean git state and committing

checkpoints regularly so they can easily revert any incorrect changes 

if Claude goes off track.

Synchronous coding for core features 

For more critical features touching the application’s business logic, the

team works synchronously with Claude Code, giving detailed prompts

with specific implementation instructions. They monitor the process in

real-time to ensure code quality, style guide compliance, and proper

architecture while letting Claude handle the repetitive coding work.

Building Vim mode 

One of their most successful async projects was implementing Vim 

key bindings for Claude Code. They asked Claude to build the entire

feature (despite it not being a priority), and roughly 70% of the final

implementation came from Claude’s autonomous work, requiring 

only a few iterations to complete.

Test generation and bug fixes 

They use Claude Code to write comprehensive tests after implementing

features and handle simple bug fixes identified in pull request reviews.

They also leverage GitHub Actions integration to have Claude

automatically address Pull Request comments like formatting issues 

or function renaming.

Codebase exploration 

When working with unfamiliar codebases (like the monorepo or API 

side), the team uses Claude Code to quickly understand how systems

work. Instead of waiting for Slack responses, they ask Claude directly 

for explanations and code references, saving significant time in 

context switching.

5 Claude Code for product development

Claude Code for product
development

5

The Claude Code team uses their
own product to build updates to
Claude Code, expanding the
product's enterprise capabilities

and agentic loop functionalities.

Main Claude Code use cases

Fast prototyping with auto-accept mode
Engineers use Claude Code for rapid prototyping by enabling "auto­

accept mode" (shift+tab) and setting up autonomous loops where Claude

writes code, runs tests, and iterates continuously. They give Claude

abstract problems they're unfamiliar with, let it work autonomously, then

review the 80% complete solution before taking over for final refinements.

Teams emphasize starting from a clean git state and committing

checkpoints regularly so they can easily revert any incorrect changes

if Claude goes off track.

Synchronous coding for core features
For more critical features touching the application's business logic, the

team works synchronously with Claude Code, giving detailed prompts

with specific implementation instructions. They monitor the process in

real-time to ensure code quality, style guide compliance, and proper

architecture while letting Claude handle the repetitive coding work.

Building Vim mode
One of their most successful async projects was implementing Vim

key bindings for Claude Code. They asked Claude to build the entire

feature (despite it not being a priority), and roughly 70% of the final

implementation came from Claude's autonomous work, requiring

only a few iterations to complete.

Test generation and bug fixes
They use Claude Code to write comprehensive tests after implementing

features and handle simple bug fixes identified in pull request reviews.

They also leverage GitHub Actions integration to have Claude

automatically address Pull Request comments like formatting issues

or function renaming.

Codebase exploration
When working with unfamiliar codebases (like the monorepo or API

side), the team uses Claude Code to quickly understand how systems

work. Instead of waiting for Slack responses, they ask Claude directly

for explanations and code references, saving significant time in

context switching.

CLAUDE CODE FOR PRODUCT DEVELOPMENT

Claude Code for product
development

Team impact Faster feature implementation 

Successfully implemented complex features like Vim mode with 70% of

code written autonomously by Claude.

Improved development velocity 

Can rapidly prototype features and iterate on ideas without getting

bogged down in implementation details.

Enhanced code quality through automated testing 

Claude generates comprehensive tests and handles routine bug fixes,

maintaining high standards while reducing manual effort.

Better codebase exploration 

Team members can quickly understand unfamiliar parts of the monorepo

without waiting for colleague responses.

Top tips from the 
Claude Code team

Create self-sufficient loops 

Set up Claude to verify its own work by running builds, tests, and lints

automatically. This allows Claude to work longer autonomously and catch

its own mistakes, especially effective when you ask Claude to generate

tests before writing code.

Develop task classification intuition 

Learn to distinguish between tasks that work well asynchronously

(peripheral features, prototyping) versus those needing synchronous

supervision (core business logic, critical fixes). Abstract tasks on the

product’s edges can be handled with “auto-accept mode,” while core

functionality requires closer oversight.

Form clear, detailed prompts 

When components have similar names or functions, be extremely specific

in your requests. The better and more detailed your prompt, the more you

can trust Claude to work independently without unexpected changes to

the wrong parts of the codebase.

6 Claude Code for product development

Claude Code for product
development

Team impact

Top tips from the
Claude Code team

6

Faster feature implementation
Successfully implemented complex features like Vim mode with 70% of

code written autonomously by Claude.

Improved development velocity
Can rapidly prototype features and iterate on ideas without getting

bogged down in implementation details.

Enhanced code quality through automated testing
Claude generates comprehensive tests and handles routine bug fixes,

maintaining high standards while reducing manual effort.

Better codebase exploration
Team members can quickly understand unfamiliar parts of the monorepo

without waiting for colleague responses.

Create self-sufficient loops
Set up Claude to verify its own work by running builds, tests, and lints

automatically. This allows Claude to work longer autonomously and catch

its own mistakes, especially effective when you ask Claude to generate

tests before writing code.

Develop task classification intuition
Learn to distinguish between tasks that work well asynchronously

(peripheral features, prototyping) versus those needing synchronous

supervision (core business logic, critical fixes). Abstract tasks on the

product's edges can be handled with "auto-accept mode," while core

functionality requires closer oversight.

Form clear, detailed prompts
When components have similar names or functions, be extremely specific

in your requests. The better and more detailed your prompt, the more you

can trust Claude to work independently without unexpected changes to

the wrong parts of the code base.

CLAUDE CODE FOR PRODUCT DEVELOPMENT

Claude Code for security
engineering

The Security Engineering team
focuses on securing the software
development lifecycle, supply
chain security, and development
environment security. They use
Claude Code extensively for
writing and debugging code.

Main Claude Code use cases

Complex infrastructure debugging 

When working on incidents, they feed Claude Code stack traces and

documentation, asking it to trace control flow through the codebase. This

significantly reduces time-to-resolution for production issues, allowing

them to understand problems that would normally take 10-15 minutes of

manual code scanning in about 5 minutes.

Terraform code review and analysis 

For infrastructure changes requiring security approval, they copy

Terraform plans into Claude Code to ask “what’s this going to do? Am I

going to regret this?” This creates tighter feedback loops and makes it

easier for the security team to quickly review and approve infrastructure

changes, reducing bottlenecks in the development process.

Documentation synthesis and runbooks 

They have Claude Code ingest multiple documentation sources and

create markdown runbooks, troubleshooting guides, and overviews. 

They use these condensed documents as context for debugging real

issues, creating a more efficient workflow than searching through full

knowledge bases.

Test-driven development workflow 

Instead of their previous “design doc → janky code → refactor → give up

on tests” pattern, they now ask Claude Code for pseudocode, guide it

through test-driven development, and periodically check in to steer it

when stuck, resulting in more reliable and testable code.

Context switching and project onboarding 

When contributing to existing projects like “dependant” (a web

application for security approval workflows), they use Claude Code 

to write, review, and execute specifications written in markdown and

stored in the codebase, enabling meaningful contributions within days

instead of weeks.

7 Claude Code for security engineering

Claude Code for security
■ ■

eng1neer1ng

7

The Security Engineering team
focuses on securing the software
development lifecycle, supply
chain security, and development

environment security. They use
Claude Code extensively for
writing and debugging code.

Main Claude Code use cases

Complex infrastructure debugging
When working on incidents, they feed Claude Code stack traces and

documentation, asking it to trace control flow through the code base. This
significantly reduces time-to-resolution for production issues, allowing
them to understand problems that would normally take 10-15 minutes of

manual code scanning in about 5 minutes.

Terraform code review and analysis
For infrastructure changes requiring security approval, they copy

Terraform plans into Claude Code to ask "what's this going to do? Am I
going to regret this?" This creates tighter feedback loops and makes it
easier for the security team to quickly review and approve infrastructure

changes, reducing bottlenecks in the development process.

Documentation synthesis and runbooks
They have Claude Code ingest multiple documentation sources and

create markdown run books, troubleshooting guides, and overviews.
They use these condensed documents as context for debugging real
issues, creating a more efficient workflow than searching through full

knowledge bases.

Test-driven development workflow
Instead of their previous "design doc - janky code - refactor - give up
on tests" pattern, they now ask Claude Code for pseudocode, guide it
through test-driven development, and periodically check in to steer it
when stuck, resulting in more reliable and testable code.

Context switching and project onboarding
When contributing to existing projects like "dependant" (a web
application for security approval workflows), they use Claude Code

to write, review, and execute specifications written in markdown and
stored in the codebase, enabling meaningful contributions within days

instead of weeks.

CLAUDE CODE FOR SECURITY ENGINEERING

Claude Code for security
engineering

Team impact Reduced incident resolution time 

Infrastructure debugging that normally takes 10-15 minutes of manual

code scanning now takes about 5 minutes.

Improved security review cycle 

Terraform code reviews for security approval happen much faster,

eliminating developer blocks while waiting for security team approval.

Enhanced cross-functional contribution 

Team members can meaningfully contribute to projects within days

instead of weeks of context building.

Better documentation workflow 

Synthesized troubleshooting guides and runbooks from multiple sources

create more efficient debugging processes.

Top tips from the 
Security Engineering
team

Use custom slash commands extensively 

Security engineering uses 50% of all custom slash command

implementations in the entire monorepo. These custom commands

streamline specific workflows and speed up repeated tasks.

Let Claude talk first 

Instead of asking targeted questions for code snippets, they now 

tell Claude Code to “commit your work as you go” and let it work

autonomously with periodic check-ins, resulting in more 

comprehensive solutions.

Leverage it for documentation 

Beyond coding, Claude Code excels at synthesizing documentation and

creating structured outputs. They provide writing samples and formatting

preferences to get documents they can immediately use in Slack, Google

Docs, and other tools to avoid interface switching fatigue.

8 Claude Code for security engineering

Claude Code for security
■ ■

eng1neer1ng

Team impact

Top tips from the
Security Engineering
team

8

Reduced incident resolution time
Infrastructure debugging that normally takes 10-15 minutes of manual

code scanning now takes about 5 minutes.

Improved security review cycle
Terraform code reviews for security approval happen much faster,

eliminating developer blocks while waiting for security team approval.

Enhanced cross-functional contribution
Team members can meaningfully contribute to projects within days

instead of weeks of context building.

Better documentation workflow
Synthesized troubleshooting guides and runbooks from multiple sources

create more efficient debugging processes.

Use custom slash commands extensively
Security engineering uses 50% of all custom slash command

implementations in the entire monorepo. These custom commands

streamline specific workflows and speed up repeated tasks.

Let Claude talk first
Instead of asking targeted questions for code snippets, they now

tell Claude Code to "commit your work as you go" and let it work

autonomously with periodic check-ins, resulting in more

comprehensive solutions.

Leverage it for documentation
Beyond coding, Claude Code excels at synthesizing documentation and

creating structured outputs. They provide writing samples and formatting

preferences to get documents they can immediately use in Slack, Google

Docs, and other tools to avoid interface switching fatigue.

CLAUDE CODE FOR SECURITY ENGINEERING

Claude Code for inference

The Inference team manages 
the memory system that stores
information while Claude reads
your prompt and generates its
response. Team members,
especially those who are new to
machine learning, can use Claude
Code extensively to bridge that
knowledge gap and accelerate
their work.

Main Claude Code use cases

Codebase comprehension and onboarding 

The team relies heavily on Claude Code to quickly understand the

architecture when joining a complex codebase. Instead of manually

searching GitHub repos, they ask Claude to find which files call specific

functionalities, getting results in seconds rather than asking colleagues or

searching manually.

Unit test generation with edge case coverage 

After writing core functionality, they ask Claude to write comprehensive

unit tests. Claude automatically includes missed edge cases, completing

what would normally take significant mental energy in minutes, acting

like a coding assistant they can review.

Machine learning concept explanation 

Without a machine learning background, team members depend on

Claude to explain model-specific functions and settings. What would

require an hour of Google searching and reading documentation now

takes 10-20 minutes, reducing research time by 80%.

Cross-language code translation 

When testing functionality in different programming languages, they

explain what they want to test and Claude writes the logic in the required

language (like Rust), eliminating the need to learn new languages just for

testing purposes.

Command recall and Kubernetes management 

Instead of remembering complex Kubernetes commands, they ask Claude

for the correct syntax, like “how to get all pods or deployment status,” and

receive the exact commands needed for their infrastructure work.

9 Claude Code for inference

Claude Code for inference

9

The Inference team manages
the memory system that stores
information while Claude reads

your prompt and generates its
response. Team members,
especially those who are new to

machine learning, can use Claude
Code extensively to bridge that
knowledge gap and accelerate
their work.

Main Claude Code use cases

Codebase comprehension and onboarding
The team relies heavily on Claude Code to quickly understand the

architecture when joining a complex codebase. Instead of manually

searching GitHub repos, they ask Claude to find which files call specific

functionalities, getting results in seconds rather than asking colleagues or

searching manually.

Unit test generation with edge case coverage
After writing core functionality, they ask Claude to write comprehensive

unit tests. Claude automatically includes missed edge cases, completing

what would normally take significant mental energy in minutes, acting

like a coding assistant they can review.

Machine learning concept explanation
Without a machine learning background, team members depend on

Claude to explain model-specific functions and settings. What would

require an hour of Google searching and reading documentation now

takes 10-20 minutes, reducing research time by 80%.

Cross-language code translation
When testing functionality in different programming languages, they

explain what they want to test and Claude writes the logic in the required

language (like Rust), eliminating the need to learn new languages just for

testing purposes.

Command recall and Kubemetes management
Instead of remembering complex Kubernetes commands, they ask Claude

for the correct syntax, like "how to get all pods or deployment status," and

receive the exact commands needed for their infrastructure work.

CLAUDE CODE FOR INFERENCE

Claude Code for inference

Team impact Accelerated ML concept learning 

Research time reduced by 80% - what took an hour of Google searching

now takes 10-20 minutes.

Faster codebase navigation 

Can find relevant files and understand system architecture in seconds

instead of asking colleagues.

Comprehensive test coverage 

Claude automatically generates unit tests with edge cases, relieving

mental burden while maintaining code quality.

Language barrier elimination 

Can implement functionality in unfamiliar languages like Rust without

needing to learn it.

Top tips from the 
Inference team

Test knowledge base functionality first 

Try asking various questions to see if Claude can answer faster than

Google search. If it’s faster and more accurate, it’s a valuable time-saving

tool for your workflow.

Start with code generation 

Give Claude specific instructions and ask it to write logic, then verify

correctness. This helps build trust in the tool’s capabilities before using it

for more complex tasks.

Use it for test writing 

Having Claude write unit tests relieves significant pressure from daily

development work. Leverage this feature to maintain code quality without

spending time thinking through all test cases manually.

10 Claude Code for inference

Claude Code for inference

Team impact

Top tips from the
Inference team

10

Accelerated ML concept learning
Research time reduced by 80% - what took an hour of Google searching

now takes 10-20 minutes.

Faster codebase navigation
Can find relevant files and understand system architecture in seconds

instead of asking colleagues.

Comprehensive test coverage
Claude automatically generates unit tests with edge cases, relieving

mental burden while maintaining code quality.

Language barrier elimination
Can implement functionality in unfamiliar languages like Rust without

needing to learn it.

Test knowledge base functionality first
Try asking various questions to see if Claude can answer faster than

Google search. If it's faster and more accurate, it's a valuable time-saving

tool for your workflow.

Start with code generation
Give Claude specific instructions and ask it to write logic, then verify

correctness. This helps build trust in the tool's capabilities before using it

for more complex tasks.

Use it for test writing
Having Claude write unit tests relieves significant pressure from daily

development work. Leverage this feature to maintain code quality without

spending time thinking through all test cases manually.

CLAUDE CODE FOR INFERENCE

Claude Code for data science
and visualization

Data Science and ML
Engineering teams need
sophisticated visualization 
tools to understand model
performance, but building these
tools often requires expertise 
in unfamiliar languages and
frameworks. Claude Code
enables these teams to build
production-quality analytics
dashboards without becoming
full-stack developers.

Main Claude Code use cases

Building JavaScript/TypeScript dashboard apps  

Despite knowing “very little JavaScript and TypeScript,” the team uses

Claude Code to build entire React applications for visualizing RL model

performance and training data. They give Claude control to write full

applications from scratch, like a 5,000-line TypeScript app, without

needing to understand the code themselves. This is critical because

visualization apps are relatively low context and don’t require

understanding the entire monorepo, allowing rapid prototyping of tools 

to understand model performance during training and evaluations.

Handling repetitive refactoring tasks 

When faced with merge conflicts or semi-complicated file refactoring

that’s too complex for editor macros but not large enough for major

development effort, they use Claude Code like a “slot machine” - commit

their state, let Claude work autonomously for 30 minutes, and either

accept the solution or restart fresh if it doesn’t work.

Creating persistent analytics tools instead of throwaway notebooks 

Instead of building one-off Jupyter notebooks that get discarded, the

team now has Claude build permanent React dashboards that can be

reused across future model evaluations. This is important because

understanding Claude’s performance is “one of the most important things

for the team” - they need to understand how models perform during

training and evaluations, which “is actually non-trivial and simple tools

can’t get too much signal from looking at a single number go up.”

Zero-dependency task delegation 

For tasks in completely unfamiliar codebases or languages, they delegate

entire implementation to Claude Code, leveraging its ability to gather

context from the monorepo and execute tasks without their involvement

in the actual coding process. This allows productivity in areas outside

their expertise instead of spending time learning new technologies.

11 Claude Code for data science and visualization

Claude Code for data science
and visualization

11

Data Science and ML
Engineering teams need
sophisticated visualization
tools to understand model

performance, but building these
tools often requires expertise
in unfamiliar languages and
frameworks. Claude Code

enables these teams to build
production-quality analytics
dashboards without becoming
full-stack developers.

Main Claude Code use cases

Building JavaScript/Typescript dashboard apps
Despite knowing "very little JavaScript and Typescript," the team uses

Claude Code to build entire React applications for visualizing RL model

performance and training data. They give Claude control to write full

applications from scratch, like a 5,000-line Typescript app, without

needing to understand the code themselves. This is critical because

visualization apps are relatively low context and don't require

understanding the entire monorepo, allowing rapid prototyping of tools

to understand model performance during training and evaluations.

Handling repetitive refactoring tasks
When faced with merge conflicts or semi-complicated file refactoring

that's too complex for editor macros but not large enough for major

development effort, they use Claude Code like a "slot machine" - commit

their state, let Claude work autonomously for 30 minutes, and either

accept the solution or restart fresh if it doesn't work.

Creating persistent analytics tools instead of throwaway notebooks
Instead of building one-off Jupyter notebooks that get discarded, the

team now has Claude build permanent React dashboards that can be

reused across future model evaluations. This is important because

understanding Claude's performance is "one of the most important things

for the team" - they need to understand how models perform during

training and evaluations, which "is actually non-trivial and simple tools

can't get too much signal from looking at a single number go up."

Zero-dependency task delegation
For tasks in completely unfamiliar codebases or languages, they delegate

entire implementation to Claude Code, leveraging its ability to gather

context from the monorepo and execute tasks without their involvement

in the actual coding process. This allows productivity in areas outside

their expertise instead of spending time learning new technologies.

CLAUDE CODE FOR DATA SCIENCE AND VISUALIZATION

Claude Code for data science
and visualization

Team impact Achieved 2-4x time savings 

Routine refactoring tasks that were tedious but manageable manually 

are now completed much faster.

Built complex applications in unfamiliar languages 

Created 5,000-line TypeScript applications despite having minimal

JavaScript/TypeScript experience.

Shifted from throwaway to persistent tools 

Instead of disposable Jupyter notebooks, now building reusable React

dashboards for model analysis.

Direct model improvement insights 

Firsthand Claude Code experience informs development of better

memory systems and UX improvements for future model iterations.

Enabled visualization-driven decision making 

Better understanding of Claude’s performance during training and

evaluations through advanced data visualization tools.

Top tips from the 
Data Science and 
ML Engineering teams

Treat it like a slot machine 

Save your state before letting Claude work, let it run for 30 minutes, 

then either accept the result or start fresh rather than trying to wrestle

with corrections. Starting over often has a higher success rate than trying

to fix Claude’s mistakes.

Interrupt for simplicity when needed 

While supervising, don’t hesitate to stop Claude and ask “why are 

you doing this? Try something simpler.” The model tends toward 

more complex solutions by default but responds well to requests for 

simpler approaches.

12 Claude Code for data science and visualization

Claude Code for data science
and visualization

Team impact

Top tips from the
Data Science and
ML Engineering teams

12

Achieved 2-4x time savings
Routine refactoring tasks that were tedious but manageable manually
are now completed much faster.

Built complex applications in unfamiliar languages
Created 5,000-line Typescript applications despite having minimal

JavaScript/Typescript experience.

Shifted from throwaway to persistent tools
Instead of disposable Jupyter notebooks, now building reusable React

dashboards for model analysis.

Direct model improvement insights
Firsthand Claude Code experience informs development of better

memory systems and UX improvements for future model iterations.

Enabled visualization-driven decision making
Better understanding of Claude's performance during training and

evaluations through advanced data visualization tools.

Treat it like a slot machine
Save your state before letting Claude work, let it run for 30 minutes,
then either accept the result or start fresh rather than trying to wrestle

with corrections. Starting over often has a higher success rate than trying
to fix Claude's mistakes.

Interrupt for simplicity when needed
While supervising, don't hesitate to stop Claude and ask "why are
you doing this? Try something simpler." The model tends toward
more complex solutions by default but responds well to requests for

simpler approaches.

CLAUDE CODE FOR DATA SCIENCE AND VISUALIZATION

Claude Code for API

The API Knowledge team works
on features like PDF support,
citations, and web search that
bring additional knowledge into
Claude’s context window.
Working across large, complex
codebases means constantly
encountering unfamiliar code
sections, spending significant
time understanding which files to
examine for any given task, and
building context before making
changes. Claude Code improves
this experience by serving as a
guide that can help them
understand system architecture,
identify relevant files, and
explain complex interactions.

Main Claude Code use cases

First-step workflow planning 

The team uses Claude Code as their “first stop” for any task, asking it 

to identify which files to examine for bug fixes, feature development, 

or analysis. This replaces the traditional time-consuming process of

manually navigating the codebase and gathering context before 

starting work.

Independent debugging across codebases 

The team now has the confidence to tackle bugs in unfamiliar parts of the

codebase instead of asking others for help. They can ask Claude “Do you

think you can fix this bug? This is the behavior I’m seeing” and often get

immediate progress, which wasn’t feasible before given the time

investment required.

Model iteration testing through dogfooding 

Claude Code automatically uses the latest research model snapshots,

making it their primary way of experiencing model changes. This gives

them direct feedback on model behavior changes during development

cycles, which they hadn’t experienced during previous launches.

Eliminating context-switching overhead 

Instead of copying code snippets and dragging files into Claude.ai 

while explaining problems extensively, they can ask questions directly in

Claude Code without additional context gathering, significantly reducing 

mental overhead.

13 Claude Code for API

Claude Code for API

13

The API Knowledge team works
on features like PDF support,
citations, and web search that

bring additional knowledge into
Claude's context window.
Working across large, complex

codebases means constantly
encountering unfamiliar code
sections, spending significant
time understanding which files to
examine for any given task, and
building context before making

changes. Claude Code improves
this experience by serving as a
guide that can help them
understand system architecture,
identify relevant files, and
explain complex interactions.

Main Claude Code use cases

First-step workflow planning
The team uses Claude Code as their "first stop" for any task, asking it

to identify which files to examine for bug fixes, feature development,

or analysis. This replaces the traditional time-consuming process of

manually navigating the codebase and gathering context before

starting work.

Independent debugging across codebases
The team now has the confidence to tackle bugs in unfamiliar parts of the

code base instead of asking others for help. They can ask Claude "Do you

think you can fix this bug? This is the behavior I'm seeing" and often get

immediate progress, which wasn't feasible before given the time

investment required.

Model iteration testing through dogfooding
Claude Code automatically uses the latest research model snapshots,

making it their primary way of experiencing model changes. This gives

them direct feedback on model behavior changes during development

cycles, which they hadn't experienced during previous launches.

Eliminating context-switching overhead
Instead of copying code snippets and dragging files into Claude.ai

while explaining problems extensively, they can ask questions directly in

Claude Code without additional context gathering, significantly reducing

mental overhead.

CLAUDE CODE FOR API

Claude Code for API

Team impact Increased confidence in tackling unfamiliar areas 

Team members can independently debug bugs and investigate incidents

in unfamiliar codebases.

Significant time savings in context gathering 

Eliminated the overhead of copying code snippets and dragging files into

Claude.ai, reducing mental context-switching burden.

Faster rotation onboarding 

Engineers rotating to new teams can quickly navigate unfamiliar

codebases and contribute meaningfully without extensive colleague

consultation.

Enhanced developer happiness 

Team reports feeling happier and more productive with reduced friction

in daily workflows.

Top tips from the 
API Knowledge team

Treat it as an iterative partner, not a one-shot solution 

Rather than expecting Claude to solve problems immediately, approach 

it as a collaborator you iterate with. This works better than trying to get

perfect solutions on the first try.

Use it for building confidence in unfamiliar areas 

Don’t hesitate to tackle bugs or investigate incidents outside your

expertise - Claude Code makes it feasible to work independently in areas

that would normally require extensive context building.

Start with minimal information 

Begin with just the bare minimum of what you need and let Claude guide

you through the process, rather than front-loading extensive explanations.

14 Claude Code for API

Claude Code for API

Team impact

Top tips from the
API Knowledge team

14

Increased confidence in tackling unfamiliar areas
Team members can independently debug bugs and investigate incidents

in unfamiliar codebases.

Significant time savings in context gathering
Eliminated the overhead of copying code snippets and dragging files into

Claude.ai, reducing mental context-switching burden.

Faster rotation onboarding
Engineers rotating to new teams can quickly navigate unfamiliar

code bases and contribute meaningfully without extensive colleague

consultation.

Enhanced developer happiness
Team reports feeling happier and more productive with reduced friction

in daily workflows.

Treat it as an iterative partner, not a one-shot solution
Rather than expecting Claude to solve problems immediately, approach

it as a collaborator you iterate with. This works better than trying to get

perfect solutions on the first try.

Use it for building confidence in unfamiliar areas
Don't hesitate to tackle bugs or investigate incidents outside your

expertise - Claude Code makes it feasible to work independently in areas

that would normally require extensive context building.

Start with minimal information
Begin with just the bare minimum of what you need and let Claude guide

you through the process, rather than front-loading extensive explanations.

CLAUDE CODE FOR API

Claude Code for growth
marketing

The Growth Marketing 
team focuses on building out
performance marketing channels
across paid search, paid social,
mobile app stores, email
marketing, and SEO. As a non-
technical team of one, they use
Claude Code to automate
repetitive marketing tasks and
create agentic workflows that
would traditionally require
significant engineering
resources.

Main Claude Code use cases

Automated Google Ads creative generation 

The team built an agentic workflow that processes CSV files containing

hundreds of existing ads with performance metrics, identifies

underperforming ads for iteration, and generates new variations that

meet strict character limits (30 characters for headlines, 90 for

descriptions). Using two specialized sub-agents (one for headlines, one 

for descriptions), the system can generate hundreds of new ads in

minutes instead of requiring manual creation across multiple campaigns.

This has enabled them to test and iterate at scale, something that would

have taken a significant amount of time to achieve previously.

Figma plugin for mass creative production 

Instead of manually duplicating and editing static images for paid 

social ads, they developed a Figma plugin that identifies frames and

programmatically generates up to 100 ad variations by swapping

headlines and descriptions, reducing what would take hours of copy-

pasting to half a second per batch. This enables 10x creative output,

allowing the team to test vastly more creative variations across key 

social channels.

Meta Ads MCP server for campaign analytics 

They created an MCP server integrated with Meta Ads API to query

campaign performance, spending data, and ad effectiveness directly

within the Claude Desktop app, eliminating the need to switch between

platforms for performance analysis, saving critical time where every

efficiency gain translates to better ROI.

Advanced prompt engineering with memory systems 

They implemented a rudimentary memory system that logs hypotheses

and experiments across ad iterations, allowing the system to pull previous

test results into context when generating new variations, creating a self-

improving testing framework. This enables systematic experimentation

that would be impossible to track manually.

15 Claude Code for growth marketing

Claude Code for growth
marketing

15

The Growth Marketing
team focuses on building out
performance marketing channels

across paid search, paid social,
mobile opp stores, email
marketing, and SEO. As a non­
technical team of one, they use
Claude Code to automate

repetitive marketing tasks and
create agentic workflows that
would traditionally require
significant engineering
resources.

Main Claude Code use cases

Automated Google Ads creative generation
The team built an agentic workflow that processes CSV files containing

hundreds of existing ads with performance metrics, identifies

underperforming ads for iteration, and generates new variations that

meet strict character limits (30 characters for headlines, 90 for

descriptions). Using two specialized sub-agents (one for headlines, one

for descriptions), the system can generate hundreds of new ads in

minutes instead of requiring manual creation across multiple campaigns.

This has enabled them to test and iterate at scale, something that would

have taken a significant amount of time to achieve previously.

Figma plugin for mass creative production
Instead of manually duplicating and editing static images for paid

social ads, they developed a Figma plugin that identifies frames and

programmatically generates up to 100 ad variations by swapping

headlines and descriptions, reducing what would take hours of copy­

pasting to half a second per batch. This enables l0x creative output,

allowing the team to test vastly more creative variations across key

social channels.

Meta Ads MCP server for campaign analytics
They created an MCP server integrated with Meta Ads API to query

campaign performance, spending data, and ad effectiveness directly

within the Claude Desktop app, eliminating the need to switch between

platforms for performance analysis, saving critical time where every

efficiency gain translates to better ROI.

Advanced prompt engineering with memory systems
They implemented a rudimentary memory system that logs hypotheses

and experiments across ad iterations, allowing the system to pull previous

test results into context when generating new variations, creating a self­

improving testing framework. This enables systematic experimentation

that would be impossible to track manually.

CLAUDE CODE FOR GROWTH MARKETING

Claude Code for growth
marketing

Team impact Dramatic time savings on repetitive tasks 

Ad copy creation reduced from 2 hours to 15 minutes, freeing up time for

strategic work.

10x increase in creative output 

The team can now test vastly more ad variations across channels with

automated generation and Figma integration.

Operating like a larger team 

The team can handle tasks that traditionally required dedicated

engineering resources.

Strategic focus shift 

The team can spend more time on overall strategy and building agentic

automation rather than manual execution.

Top tips from the 
Growth Marketing
team

Identify API-enabled repetitive tasks 

Look for workflows involving repetitive actions with tools that have 

APIs (like ad platforms, design tools, analytics platforms). These are 

prime candidates for automation and where Claude Code provides the

most value.

Break complex workflows into specialized sub-agents 

Instead of trying to handle everything in one prompt or workflow, create

separate agents for specific tasks (like their headline agent vs. description

agent). This makes debugging easier and improves output quality when

dealing with complex requirements.

Thoroughly brainstorm and prompt plan before coding 

Spend significant time upfront using Claude.ai to think through your

entire workflow, then have Claude.ai create a comprehensive prompt and

code structure for Claude Code to reference. Also, work step-by-step

rather than asking for one-shot solutions to avoid Claude getting

overwhelmed by complex tasks.

16 Claude Code for growth marketing

Claude Code for growth
marketing

Team impact

Top tips from the
Growth Marketing
team

16

Dramatic time savings on repetitive tasks
Ad copy creation reduced from 2 hours to 15 minutes, freeing up time for

strategic work.

10x increase in creative output
The team can now test vastly more ad variations across channels with

automated generation and Figma integration.

Operating like a larger team
The team can handle tasks that traditionally required dedicated

engineering resources.

Strategic focus shift
The team can spend more time on overall strategy and building agentic

automation rather than manual execution.

Identify API-enabled repetitive tasks
Look for workflows involving repetitive actions with tools that have

APis (like ad platforms, design tools, analytics platforms). These are

prime candidates for automation and where Claude Code provides the

most value.

Break complex workflows into specialized sub-agents
Instead of trying to handle everything in one prompt or workflow, create

separate agents for specific tasks (like their headline agent vs. description

agent). This makes debugging easier and improves output quality when

dealing with complex requirements.

Thoroughly brainstorm and prompt plan before coding
Spend significant time upfront using Claude.ai to think through your

entire workflow, then have Claude.ai create a comprehensive prompt and

code structure for Claude Code to reference. Also, work step-by-step

rather than asking for one-shot solutions to avoid Claude getting

overwhelmed by complex tasks.

CLAUDE CODE FOR GROWTH MARKETING

Claude Code for product design

The Product Design team
supports Claude Code, Claude.ai
and the Anthropic API,
specializing in building AI
products. Even non-developers
can use Claude Code to bridge
the traditional gap between
design and engineering, enabling
direct implementation of their
design vision without extensive
back-and-forth with engineers.

Main Claude Code use cases

Front-end polish and state management changes 

Instead of creating extensive design documentation and going through

multiple rounds of feedback with engineers for visual tweaks (typefaces,

colors, spacing), they now directly implement these changes using Claude

Code. Engineers noted they’re making “large state management changes

that you typically wouldn’t see a designer making,” enabling them to

achieve the exact quality they envision.

GitHub Actions automated ticketing 

Using Claude Code’s GitHub integration, they can simply file issues/

tickets describing needed changes, and Claude automatically proposes

code solutions without having to open Claude Code, creating a seamless

bug-fixing and feature refinement workflow for their persistent backlog 

of polish tasks.

Rapid interactive prototyping 

By pasting mockup images into Claude Code, they generate fully

functional prototypes that engineers can immediately understand and

iterate on, replacing the traditional cycle of static Figma designs that

required extensive explanation and translation to working code.

Edge case discovery and system architecture understanding 

They use Claude Code to map out error states, logic flows, and different

system statuses, allowing them to identify edge cases during design rather

than discovering them later in development, fundamentally improving

the quality of their initial designs.

Complex copy changes and legal compliance 

For tasks like removing “research preview” messaging across the entire

codebase, they used Claude Code to find all instances, review surrounding

copy, coordinate changes with legal in real-time, and implement updates -

a process that took two 30-minute calls instead of a week of back-and-

forth coordination.

17 Claude Code for product design

Claude Code for product design

17

The Product Design team
supports Claude Code, Claude.ai
and the Anthropic API,
specializing in building Al
products. Even non-developers
can use Claude Code to bridge

the traditional gap between
design and engineering, enabling
direct implementation of their
design vision without extensive
back-and-forth with engineers.

Main Claude Code use cases

Front-end polish and state management changes
Instead of creating extensive design documentation and going through

multiple rounds of feedback with engineers for visual tweaks (typefaces,

colors, spacing), they now directly implement these changes using Claude

Code. Engineers noted they're making "large state management changes

that you typically wouldn't see a designer making," enabling them to

achieve the exact quality they envision.

GitHub Actions automated ticketing
Using Claude Code's GitHub integration, they can simply file issues/

tickets describing needed changes, and Claude automatically proposes

code solutions without having to open Claude Code, creating a seamless

bug-fixing and feature refinement workflow for their persistent backlog

of polish tasks.

Rapid interactive prototyping
By pasting mockup images into Claude Code, they generate fully

functional prototypes that engineers can immediately understand and

iterate on, replacing the traditional cycle of static Figma designs that

required extensive explanation and translation to working code.

Edge case discovery and system architecture understanding
They use Claude Code to map out error states, logic flows, and different

system statuses, allowing them to identify edge cases during design rather

than discovering them later in development, fundamentally improving

the quality of their initial designs.

Complex copy changes and legal compliance
For tasks like removing "research preview" messaging across the entire

code base, they used Claude Code to find all instances, review surrounding

copy, coordinate changes with legal in real-time, and implement updates -

a process that took two 30-minute calls instead of a week ofback-and­

forth coordination.

CLAUDE CODE FOR PRODUCT DESIGN

Claude Code for product design

Team impact Transformed core workflow 

Claude Code becomes a primary design tool, with Figma and Claude Code

open 80% of the time.

2-3x faster execution 

Visual and state management changes that previously required extensive

back-and-forth with engineers now implemented directly.

Weeks to hours cycle time 

Complex projects like GA launch messaging that would take a week of

coordination now completed in two 30-minute calls.

Two distinct user experiences 

Developers get “augmented workflow” (faster execution), while non-

technical users get “holy crap, I’m a developer workflow” (entirely new

capabilities previously impossible).

Improved design-engineering collaboration 

Better communication and faster problem-solving because designers

understand system constraints and possibilities upfront.

Top tips from the 
Product Design team

Get proper setup help from engineers 

Have engineering teammates help with initial repository setup and

permissions - the technical onboarding is challenging for non-developers,

but once configured, it becomes transformative for daily workflow.

Use custom memory files to guide Claude’s behavior 

Create specific instructions telling Claude you’re a designer with little

coding experience who needs detailed explanations and smaller,

incremental changes, dramatically improving the quality of Claude’s

responses and making it less intimidating.

Leverage image pasting for prototyping 

Use Command+V to paste screenshots directly into Claude Code - it excels

at reading designs and generating functional code, making it invaluable

for turning static mockups into interactive prototypes that engineers can

immediately understand and build upon.

18 Claude Code for product design

Claude Code for product design

Team impact

Top tips from the
Product Design team

18

Transformed core workflow
Claude Code becomes a primary design tool, with Figma and Claude Code

open 80% of the time.

2-3x faster execution
Visual and state management changes that previously required extensive

back-and-forth with engineers now implemented directly.

Weeks to hours cycle time
Complex projects like GA launch messaging that would take a week of

coordination now completed in two 30-minute calls.

Two distinct user experiences
Developers get "augmented workflow" (faster execution), while non­

technical users get "holy crap, I'm a developer workflow" (entirely new

capabilities previously impossible).

Improved design-engineering collaboration
Better communication and faster problem-solving because designers

understand system constraints and possibilities upfront.

Get proper setup help from engineers
Have engineering teammates help with initial repository setup and

permissions - the technical onboarding is challenging for non-developers,

but once configured, it becomes transformative for daily workflow.

Use custom memory files to guide Claude's behavior
Create specific instructions telling Claude you're a designer with little

coding experience who needs detailed explanations and smaller,

incremental changes, dramatically improving the quality of Claude's

responses and making it less intimidating.

Leverage image pasting for prototyping
Use Command+V to paste screenshots directly into Claude Code - it excels

at reading designs and generating functional code, making it invaluable

for turning static mockups into interactive prototypes that engineers can

immediately understand and build upon.

CLAUDE CODE FOR PRODUCT DESIGN

Claude Code for RL engineering

The RL Engineering team
focuses on efficient sampling in
RL and weight transfers across
the cluster. They use Claude
Code primarily for writing small
to medium features, debugging,
and understanding complex
codebases, with an iterative
approach that includes frequent
checkpointing and rollbacks.

Main Claude Code use cases

Feature development with supervised autonomy 

The team lets Claude Code write most of the code for small to medium

features while providing oversight, such as implementing authentication

mechanisms for weight transfer components. They work interactively,

allowing Claude to take the lead but steering it when it goes off track.

Test generation and code review 

After implementing changes themselves, they ask Claude Code to add

tests or review their code. This automated testing workflow saves

significant time on routine but important quality assurance tasks.

Debugging and error investigation 

They use Claude Code to debug errors with mixed results - sometimes it

identifies issues immediately and adds relevant tests, while other times 

it struggles to understand the problem, but overall provides value when 

it works.

Codebase comprehension and call stack analysis 

One of the biggest changes in their workflow is using Claude Code to get

quick summaries of relevant components and call stacks, replacing

manual code reading or extensive debugging output generation.

Kubernetes operations guidance 

They frequently ask Claude Code about Kubernetes operations that would

otherwise require extensive Googling, getting immediate answers for

configuration and deployment questions.

19 Claude Code for RL engineering

Claude Code for RL engineering

19

The RL Engineering team
focuses on efficient sampling in
RL and weight transfers across

the cluster. They use Claude
Code primarily for writing small
to medium features, debugging,

and understanding complex
codebases, with an iterative
approach that includes frequent
checkpointing and rollbacks.

Main Claude Code use cases

Feature development with supervised autonomy
The team lets Claude Code write most of the code for small to medium
features while providing oversight, such as implementing authentication

mechanisms for weight transfer components. They work interactively,

allowing Claude to take the lead but steering it when it goes off track.

Test generation and code review
After implementing changes themselves, they ask Claude Code to add

tests or review their code. This automated testing workflow saves

significant time on routine but important quality assurance tasks.

Debugging and error investigation
They use Claude Code to debug errors with mixed results - sometimes it

identifies issues immediately and adds relevant tests, while other times

it struggles to understand the problem, but overall provides value when

it works.

Codebase comprehension and call stack analysis
One of the biggest changes in their workflow is using Claude Code to get

quick summaries of relevant components and call stacks, replacing

manual code reading or extensive debugging output generation.

Kubernetes operations guidance
They frequently ask Claude Code about Kubemetes operations that would

otherwise require extensive Googling, getting immediate answers for

configuration and deployment questions.

CLAUDE CODE FOR RL ENGINEERING

Claude Code for RL engineering

Development 
workflow impact

Experimental approach enabled 

They now use a “try and rollback” methodology, frequently committing

checkpoints so they can test Claude’s autonomous implementation

attempts and revert if needed, enabling more experimental.

Documentation acceleration 

Claude Code automatically adds helpful comments that save significant

time on documentation, though they note it sometimes adds comments

in odd places or uses questionable code organization.

Speed-up with limitations 

While Claude Code can implement small-to-medium PRs with “relatively

little time” from them, they acknowledge it only works on first attempt

about one-third of the time, requiring either additional guidance or

manual intervention.

Top tips from the 
RL Engineering team

Customize your Claude.md file for specific patterns 

Add instructions to your Claude.md file to prevent Claude from making

repeated tool-calling mistakes, such as telling it to “run pytest not run and

don’t cd unnecessarily - just use the right path.” This significantly

improved consistency.

Use a checkpoint-heavy workflow 

Regularly commit your work as Claude makes changes so you can easily

roll back when experiments don’t work out. This enables a more

experimental approach to development without risk.

Try one-shot first, then collaborate 

Give Claude a quick prompt and let it attempt the full implementation

first. If it works (about one-third of the time), you’ve saved significant

time. If not, then switch to a more collaborative, guided approach.

20 Claude Code for RL engineering

Claude Code for RL engineering

Development
workflow impact

Top tips from the
RL Engineering team

20

Experimental approach enabled
They now use a "try and rollback" methodology, frequently committing

checkpoints so they can test Claude's autonomous implementation

attempts and revert if needed, enabling more experimental.

Documentation acceleration
Claude Code automatically adds helpful comments that save significant

time on documentation, though they note it sometimes adds comments

in odd places or uses questionable code organization.

Speed-up with limitations
While Claude Code can implement small-to-medium PRs with "relatively

little time" from them, they acknowledge it only works on first attempt

about one-third of the time, requiring either additional guidance or

manual intervention.

Customize your Claude.md file for specific patterns
Add instructions to your Claude.md file to prevent Claude from making

repeated tool-calling mistakes, such as telling it to "run pytest not run and

don't cd unnecessarily - just use the right path." This significantly

improved consistency.

Use a checkpoint-heavy workflow
Regularly commit your work as Claude makes changes so you can easily

roll back when experiments don't work out. This enables a more

experimental approach to development without risk.

Try one-shot first, then collaborate
Give Claude a quick prompt and let it attempt the full implementation

first. Ifit works (about one-third of the time), you've saved significant

time. If not, then switch to a more collaborative, guided approach.

CLAUDE CODE FOR RL ENGINEERING

Claude Code for legal

The Legal team discovered
Claude Code’s potential through
experimentation, and a desire to
learn about Anthropic’s product
offerings. Additionally, one team
member had a personal use case
related to creating accessibility
tools for family and work
prototypes that demonstrate 
the technology’s power for 
non-developers.

Main Claude Code use cases

Custom accessibility solution for family members 

Team members have built communication assistants for family members

with speaking difficulties due to medical diagnoses. In just one hour, they

created a predictive text app using native speech-to-text that suggests

responses and speaks them using voice banks, solving gaps in existing

accessibility tools recommended by speech therapists.

Legal department workflow automation 

They created prototype “phone tree” systems to help team members

connect with the right lawyer at Anthropic, demonstrating how legal

departments can build custom tools for common tasks without traditional

development resources.

Team coordination tools 

Managers have built G Suite applications that automate weekly team

updates and track legal review status across products, allowing lawyers to

quickly flag items needing review through simple button clicks rather

than spreadsheet management.

Rapid prototyping for solution validation 

They use Claude Code to quickly build functional prototypes they can

show to domain experts (like showing accessibility tools to UCSF

specialists) to validate ideas and identify existing solutions before

investing more time.

21 Claude Code for legal

Claude Code for legal

21

The Legal team discovered
Claude Code's potential through
experimentation, and a desire to

learn about Anthropic's product
offerings. Additionally, one team
member had a personal use case

related to creating accessibility
tools for fomily and work
prototypes that demonstrate
the technology's power for
non-developers.

Main Claude Code use cases

Custom accessibility solution for family members
Team members have built communication assistants for family members

with speaking difficulties due to medical diagnoses. In just one hour, they

created a predictive text app using native speech-to-text that suggests

responses and speaks them using voice banks, solving gaps in existing

accessibility tools recommended by speech therapists.

Legal department workflow automation
They created prototype "phone tree" systems to help team members

connect with the right lawyer at Anthropic, demonstrating how legal

departments can build custom tools for common tasks without traditional

development resources.

Team coordination tools
Managers have built G Suite applications that automate weekly team

updates and track legal review status across products, allowing lawyers to

quickly flag items needing review through simple button clicks rather

than spreadsheet management.

Rapid prototyping for solution validation
They use Claude Code to quickly build functional prototypes they can

show to domain experts (like showing accessibility tools to UCSF

specialists) to validate ideas and identify existing solutions before

investing more time.

CLAUDE CODE FOR LEGAL

Claude Code for legal

Work style and impact Planning in Claude.ai, building in Claude Code 

They use a two-step process where they brainstorm and plan with

Claude.ai first, then move to Claude Code for implementation, asking it 

to slow down and work step-by-step rather than outputting everything 

at once.

Visual-first approach 

They frequently use screenshots to show Claude Code what they want

interfaces to look like, then iterate based on visual feedback rather than

describing features in text.

Prototype-driven innovation 

They emphasize overcoming the fear of sharing “silly” or “toy”

prototypes, as these demonstrations inspire others to see possibilities

they hadn’t considered.

Security and
compliance awareness

MCP integration concerns 

As product lawyers, they immediately identify security implications of

deep MCP integrations, noting how conservative security postures will

create barriers as AI tools access more sensitive systems.

Compliance tooling priorities 

They advocate for building compliance tools quickly as AI 

capabilities expand, recognizing the balance between innovation 

and risk management.

Top tips from the 
Legal Department

Plan extensively in Claude.ai first 

Use Claude’s conversational interface to flesh out your entire idea before

moving to Claude Code. Then ask Claude to summarize everything into a

step-by-step prompt for implementation.

Work incrementally and visually 

Ask Claude Code to slow down and implement one step at a time so you

can copy-paste without getting overwhelmed. Use screenshots liberally to

show what you want interfaces to look like.

Share prototypes despite imperfection 

Overcome the urge to hide “toy” projects or unfinished work - sharing

prototypes helps others see possibilities and sparks innovation across

departments that don’t typically interact.

22 Claude Code for legal

Claude Code for legal

Work style and impact

Security and
compliance awareness

Top tips from the
Legal Department

22

Planning in Claude.ai, building in Claude Code
They use a two-step process where they brainstorm and plan with

Claude.ai first, then move to Claude Code for implementation, asking it

to slow down and work step-by-step rather than outputting everything

at once.

Visual-first approach
They frequently use screenshots to show Claude Code what they want

interfaces to look like, then iterate based on visual feedback rather than

describing features in text.

Prototype-driven innovation
They emphasize overcoming the fear of sharing "silly" or "toy"

prototypes, as these demonstrations inspire others to see possibilities

they hadn't considered.

MCP integration concerns
As product lawyers, they immediately identify security implications of

deep MCP integrations, noting how conservative security postures will

create barriers as AI tools access more sensitive systems.

Compliance tooling priorities
They advocate for building compliance tools quickly as AI

capabilities expand, recognizing the balance between innovation

and risk management.

Plan extensively in Claude.ai first
Use Claude's conversational interface to flesh out your entire idea before

moving to Claude Code. Then ask Claude to summarize everything into a

step-by-step prompt for implementation.

Work incrementally and visually
Ask Claude Code to slow down and implement one step at a time so you

can copy-paste without getting overwhelmed. Use screenshots liberally to

show what you want interfaces to look like.

Share prototypes despite hnperfection
Overcome the urge to hide "toy" projects or unfinished work - sharing

prototypes helps others see possibilities and sparks innovation across

departments that don't typically interact.

CLAUDE CODE FOR LEGAL

	How-Anthropic-teams-use-Claude-Code-01
	How-Anthropic-teams-use-Claude-Code-02
	How-Anthropic-teams-use-Claude-Code-03
	How-Anthropic-teams-use-Claude-Code-04
	How-Anthropic-teams-use-Claude-Code-05
	How-Anthropic-teams-use-Claude-Code-06
	How-Anthropic-teams-use-Claude-Code-07
	How-Anthropic-teams-use-Claude-Code-08
	How-Anthropic-teams-use-Claude-Code-09
	How-Anthropic-teams-use-Claude-Code-10
	How-Anthropic-teams-use-Claude-Code-11
	How-Anthropic-teams-use-Claude-Code-12
	How-Anthropic-teams-use-Claude-Code-13
	How-Anthropic-teams-use-Claude-Code-14
	How-Anthropic-teams-use-Claude-Code-15
	How-Anthropic-teams-use-Claude-Code-16
	How-Anthropic-teams-use-Claude-Code-17
	How-Anthropic-teams-use-Claude-Code-18
	How-Anthropic-teams-use-Claude-Code-19
	How-Anthropic-teams-use-Claude-Code-20
	How-Anthropic-teams-use-Claude-Code-21
	How-Anthropic-teams-use-Claude-Code-22
	How-Anthropic-teams-use-Claude-Code-23

